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On the Nonlinear Examples of Sequence Spaces
Induced by Lp-Functions

Kazuo HASHIMOTO, Gen NAKAMURA
(2011411511 H&3)

LpBBUT & o TH R LN I RIIREDHITDONT
"R —K, P T

ABSTRACT. In this paper, we discuss the linearity and the nonlinearity of a
sequence space Ap(f) induced by a Lp-function f. In particular, we give
examples of Ly-functions such that Ap(f) are not linear.
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INTRODUCTION AND PRELIMINARIES

Let f(5 0) be an L,-function defined on the real line R and assume 1 < p < +oc0.
For a sequence of real numbers a = (a,) € R*, define

1/p
= (; /R F@— ax) - f(rc)l”drc>

Ap(f) :={a e R*™ : ¥p(a; f) < +oo}.
The following results are known (cf.[2]):

and

» For every a = (a,) € R*®,
W, (lal; f) = W,(a; 1), where Ja] = (jan);

o Up(a—b;f) < Up(a; f)+ Up(b; f) for every a,b € R, i.e, the sets Ay(f)
are additive subgroups of R*°.

Let W1P(R) be a Sobolev space, i.e, f € WLP(R) if and only if f € L,(R) and
the derivative Df of f in the sense of distribution belongs to L,(R). In particular,
if f € L}(R) and Df is a Radon measure of bounded variation on R, f called a
function of bounded variation. The class of all such functions will be denoted by
BV (R). Thus, f € BV(R) if and only if there is a Radon measure y defined in R
such that |u|(R) < +o00 and

/fw dz = — /(pdu, v € C5°(R),

where, |Df|(R) = |u|(R) means the total variation of p.

It is obvious that a function f on R is absolutely continuous and the derivative
J' isin L1(R), then f is of bounded variation, i.e. WH(R) C BV (R) (see [5]).

In [2], A. Honda, Y. Okazaki and H. Sato provided the following results:

(i) ([2, Theorem 1, Theorem 2]) If 1 < p < +oc0 and f(# 0) € L,(R), then
Ap(f) C £p. In particular, f € WHP(R) implies £, = A,(f).

(i1) ([2, Corollary 4]) If 1 < p < 400 and f(5% 0) € L,(R), then £, = Ay(f) if

and only if f € W1P(R).
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On the nonlinear examples of sequence spaces induced by L,functions

On the other hand, the authors ([6]) showed that necessary and sufficient con-
ditions for the linearity of A,(f) , and that £, = A;(f) if and only if f € BV(R).

In this paper, we discuss the linearity and the nonlinearity of a sequence space
Ap(f) induced by a Lp-function f. In particular, we give two examples of L,-
functions such that A,(f) are not linear.

1. THE LINEARITY OF Ay(f)

In [6], We gave necessary and sufficient conditions for the linearity of A,(f), and
an example such that A,(f) is linear.

Theorem 1.1. ([6, Theorem 2.1]) Let 1 < p < +oo and f(# 0) € Ly(R). Then
the following are equivalent:

(1) Ap(f) is a linear subspace of R* ;
(ii) For any 0 < k < 1, there exists a constant C(k) > 0 such that

[ e~ ko) - f@pee
< () [ If@=a)- f@)Pda, Va > 0;
R

(iii) There exits a constant C > 0 such that
[ 1= ko) - fe)Pde
< C’/ |f(z—a)— f(2)Pdz, 0 <VE <1, Va>0.
R

Theorem 1.2. ([3] and [6, Theorem 2.2]) Let f € LP(R), 1 < p < co. If there
exists a countable partition (a;)%, on R satisfying the following conditions:
(1) a; < a1 and lim a; = +oo;
i—too
(2) ifilf(avi+1 —a;) > 0;
(3) f is monotone on (a;,ait1).
Then Ap(f) is linear.

2. THE NONLINEARITY OF Ap(f)

In this section, we give two examples of L,-functions such that A,(f) are not
linear. We begin with a following theorem.

Theorem 2.1. Let fy € Co(R)(s# 0) with supp fo C [0,7]. For m andn € N, we
define fmn € C(R) by

Jmn(@) =1+ %sin(m:).

Then there exist sequences {m;} and {n;} satisfying the following conditions (i)
and (i):

J
() f(2)= lim fo(z) I fmimi (@) (uniformiy on R).
i=1
o =) = Ol
@ I e ey = 0,
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Proof. Let 0 < @ < 1 and B > 1 and take a sequence (m;) of N so that
1

(2.1) 0<a<H(1——><1<H(1+—><,3

i=1 i

On the other hand, determine inductively a sequence (n;) of N satisfying the fol-
lowing conditions:

J
1 .

(2.2) fi(@) = fo(z) H (1 + Esm(nim)) ,

i=1 *

™ 2m
(23 5 (- 2) =50 B(-2)- 50
J n; 3 ) 3 n; J )
(2.4) n; is a multiple of 2n;_; for every 2 <i < j.
First, put n; = 1 and assume that the above three conditions (2.2), (2.3) and (2.4)
hold for ny, ng, - -+, n;. We define f;, as follows:
(2.5) fim(@) = f;(x) (1 + ! sin(n:c)) forneN,zeR
Mj+1

Then we have

fgn ($_ _) f]n( )

fi (:c - —) (1 + m—— sin(nz — 1r)> fi(@) (1 + J1+1 sin(n:t))
fi (a: - %) (1 - m:+1 sin(m:)) - fi(=) (1 + mjl.,.] sin(nx))

= (fj (m - —) f; (x)) < m;.l sin(m:))

Since f;(# 0) € Ch(R) and

lim ”fj ( - %) - fg’(')”iD =0,

I

- m2+1 Jj(x) sin(nz).

n—>00
we see that
2 . e
hmmf Hfj n ( - —) Jim( )H = p— 11nn_1)1£f (/R | f;(z) sin{nz)|? da:)
1 [m 1/p
(2.6) = illp (;/0 |sin:v|pd:1:) > 0.

On the other hand,
2
fim (93 = —> T, ()

sin(nz — 27r)> - fi(=) (1 + ml

j+1

sin(na:))

I
S
TN
8
|

N
3|=1
N——
N
ot
+

mj

= <f; 2z —fi@) p {1+ 1 sin(na) .
{ ( n) }( mMj+1

Since 5
(21
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() s,

From (2.6) and (2.7), we see that

we have

(2.7) lim

n—eco

. 2m
(2'8) fj,’nj+1 ( - nj41 ) >-7 fj,nj+1 ( - nj+1> - fjx"j+1 () »
for a sufficiently large number n;4, with a multiple of 2n;.
From the definition of fjn,,,,
Fims(®) = F(a) (1 + I sinngiaa)
Mj+1
= fo(z) H ( + — sm(n, :1:)) (1 + sin(n;41 :1:))
1 j+1

= fin1 (w)
Thus we see that (2.8) implies

Ty ( n1+1>

Hence we see that (2.2), (2.3) and (2.4) hold for j + 1. Define f(z) on R by

i 1[fi+1 ( i ) = fi+1()

Nj+1

P

J
(2.9) f(z) = Jim fj(z) = lim @] (1 + %sin(nm)) :
i=1 *

where the convergence is uniform on R by (2.1). Then it is obvious from (2.1) that
f € Co(R) and (i) holds. For j € N and z € R, we have

f(z—7/ng) = fz)
i@—n/mp) I (1 + mi sin (n (z — w/nj))>

2

i=j+1
_f ) 1+ — ( 4 )
i\T —1311 ( - sin (n; )
1
= (fj (@ —7/n;) — f;(z)) H (1 + —sin (n,m)) .
i=j+1 m;

And hence from (2.1) we have

|f (& = 7/n3) — f(2)]

(f; (x = m/n;) — f3(2))] H

i=j+1

alfj(z —n/n;) = fi(z)],

1+ ﬁ sin (n;z)

v

and so

(2.10) IfC—m/ng) = FON, 2 allfs (- = =/n) = £0)ll, forjeN.



78 fBE—k B 7T

In the same way, we have

f (@ - 2m/n5) — (2)
=2/ TT (14 o sin o - 21/m) )

i=j41 ]

—fi(z) H <1+ —sin (n,x))

i=j+1

s o—2m/m) = @) T[ (1+ o sin(mie)).

i=j+1 *
And hence from (2.1) we have

|f (z = 2m/n5) = f(&)] = |(f; (z —27/n5) = f;(2))] H

1
1 —I— — sm (niz)

_J+1
< (s @=2n/m) - @) T] (1+%)
i=j+1 *

< Blf (@ —2n/ny) — f(w)],
and so .
2.11) Nf5 ¢ =2n/n;) = f;0ll, 2 A/B)If (- = 2m/n;) — f()Il, forall j €N.
Combining (2.3), (2.10) and (2.11), we have
(2.12) IfC=m/n5) = FO, 2 G = D(/B)If (- = 2n/n) = FO,
for all j € N. Thus we see that (ii) holds. O

Remark 2.2. We see easily from (2.12) that there does not exist a constant C such
that

1£C—a/2) = FOI < CIF(C—a) = FOIR
holds for every a > 0. Thus we see from condition (iii) of Theorem 1.1 that Ap(f)
18 not a linear subspace in R,

Next we give an example of a more smooth function f such that A,(f) is not
linear. We begin with a lemma.

Lemma 2.3. Let 1 < p < oo and —c0 < a < o0. Let P € Ly((—o00,a)) N
CY((—oc0,a)) and ¥’ € Ly((—o0,a)). Then for any ¢ > 0, we have

(- = ¢) = (L, ((~o0,a)) < cllt ||, ((~00,a))-
Proof. For z € (—co,a), we have
| wol

[9(e) (o - 0l =
(] )" ([ )"
- ([ wore)”,

(%) dt‘

IN

IA
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where 1/p+1/g = 1. Hence

19(C) = (= T, ((—corayy = /_ ; [(z) — ¥(z — )P dt
cP/Q/a /m [ (£)[P dt dx
o " ded

platt / k' (£)P dt.

IA

IN

IA

Thus we have

(= ) = ¥z, ((~0.a) S ll¥llL,((—c00))-
a

Theorem 2.4. Let 1 < p < co. Then there exist a function f € L,(R) and a
sequence (n;) of N such that:

(i) feC®R)NL,R) and f(x) >0 (z €R);

(ii) the number of x satisfying f'(z) = 0 on every bounded subinterval I of R is
finite;

111 = 0.

koo I (- = 2/nk) = FOlp

Proof. We can construct f as follows. Let

e T (-l<z<1)
0 |z] > 1.

g

' 2 3 3

Fig.l y=p(z) Fig.2 y=pn(z)

Then p € C§°(R) and suppp = [-1.1]. Moreover, for all n € N, let p,(z) =
p(6(x —n+1/2)), then we have supp p, = [n —2/3,n —1/3] and 0 < p,,(z) < 1/e.
Next, choose a sequence (ny) so that ng is a multiple of ng_, for each k£ € N and

(2.13) lim e 25 — o
k—co NEe—1

holds (for example, ni = (k)!).
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Put
p(z) = e
g@) = @)Y mla)
k=1
h(@) = () pr(z)sin(nyme)
k=1
fl@) = o(z)+h(=)
' - e, . "
S AN .
Fig.3 y=g(x) Figd y=h(z)

Fig5 y= f(z) = ¢(z) + h(z)

We see easily from 0 < px(z) < 1/e and the definition of f that f(z) > 0 on R
and f € C*°(R) N Lp(R) and so (i) hlods.

To show that (ii), let £ € N. We should note that f(z) = ¢(z) on (k—1,k—2/3]U
[k — 1/3,k]. We see from the definition that f'(z) = ¢'(z) # 0 on (k — 1,k — 2/3],
[k —1/3,k).

Next, we show that {z : f'(z) = 0,k —2/3 < z < k—1/3} is a finite set. In
fact, suppose that the set {z : f'(z) = 0,k — 2/3 < & < k — 1/3} is infinite. Since
Flk=2/3)=¢'(k—2/3) # 0 and f'(k—1/3) = ¢'(k — 1/3) # 0, we see that an
accumulation point is in (k —2/3,k — 1/3). Put

fz) = 6_22(1 + e~ V/(1-38(—k+1/2)7) sin(ngmz))

on z € C. Then we see that f(z) is regular on C\ {k — 2/3,k — 1/3} and We
see from the identity theorem that f’(z) = 0 on C\ {k — 2/3,k — 1/3}. Hence
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fl(k—-2/3) = l_igrlo f'(k—2/3+¢) = 0, which contradicts the hypothesis. Thus, we
&

see that the set {z : f(z) =0,k —2/3 <z < k—1/3} for every k € N is finite, and
so the set {z: f'(z) = 0,k — 1 < z < k} for every k € N is also finite. Moreover,
we see that the number of z satisfying f’(z) = 0 on every bounded subinterval of
R is finite.

To show (iii), We note that Ilnax |W'(z)] < Mny for some M > 0, and so

1A |2, ((k—1,k)) < Mg for k € N
For k > 3, we have
k—2

1B |z p((—o0.00) + D MR |z pcci=1,6) + I Ly (e—25-1)
i=1
< 0+ Mng_2(k—2)+ Mng_1,

INA

N4 N 2y ((=o0,k—-1))

and so
k2 2

e A
n_k”hI”Lp((—oo,k—l)) < Mﬁ(nk—z(k—2)+nk—1)

Mk =L (e(k—l)zwe—(k—lf(k _9)+ 1) _
Tk Ng—1

kZ
Thus we see from (2.13) that lim E—IIh'"L ((-o0,k=1)) = 0. Let k& € N. Put
k—co Mg P ’

a=k—1and ¢c=2/ny for h in place of 9 in Lemma 2.3, then we have

(-2)-0

In the same manner, apply Lemma 2.3 as a = co and ¢ = 2/ny, for ¢ and g, then
we have

2
< o 1A ]lz, ((~cok-1)) for k€N
Lp((—00,k—1)) k

2 2

(2.14) lo(--2)-v0)| = Zily forren
ng » N
2 2,

(2.15) o(--2)=g0)| = ZNgl, forkeN
nk » g

Hence
(2.16) hmsupe ( )
k—co

3|w §|w

IA

)

limsupe H (
k—co

2
—I—hmsupe h( ——)
k—00 n L,,((—oo,k:—l))
2
+limsupe® ( - ——) h(-)
k—o0 n Lp((k~1,00))
2
= 0+ O-I-limsupek H ( — ——-)
koo " Lp((k—l,oo»

. 2
= limsupe®
k—oc0

(-2)-

Lp((k—1,00)) .
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Put a sufficiently large n; € N so that 2/n; < 1/3, and let 7 € N with & < 1. Then
for any z € [i — 1,4, since n; is a multiple of ng, we have

h (m - n—2k) =g (:c - nlk) sin (n,ﬂr (:1: - %)) =g (:z: - %) sin(n;rz),

p(o-2)- 10| = |(s(=-2) ~9(@) ) sin(oima)| <o (2= 2 ) - g(0

Thus we have that for a sufficiently large n; € N,

2 2
h(l'——> —h(z)| < ‘g(x——) —g(z)| forallz>k-—1,
ng Nk
and hence
2 2
p(-2)-m0 < fo(-2)-a0
Tt Ly((k—1,00)) Tk Ly((k—1,00))
2
< Jo(--2)-00] -
Nk p
Consequently,
. %2 2 . %2 2
limsupe® |[A | —— | —h(}) < limsupe® |g(-——) —g()
koo Tk Lp((k~1,00)) k=00 Tk »
2eh
< limsup =—|lg’[l,
k—oo Tk

0. (because of (2.13) and (2.15))
Combining this with (2.16), we have

f(-—n%) ~50)

Again, in the same manner, apply Lemma 2.3 as a = co and ¢ = 1/n;, for ¢ and

g, then we have
1
o (=) w0

g ( - nik) -9()

Therefore we have

e it s (- ) - 10

(2.17) lim e’

k—co

=0.
P

(2.18)

IA

1
—|l¢'|l, for all k € N,
Nk

(2.19)

IN

i||9'||p for all k € N.
g

r

1 3 kz —_— - — —_— - - —_— —_— .
> Zminfe® (=l (- = /me) = (), + 1A (= /m) = BO, )
= liminfe*” ||A ( - i) — k(")

k—o0 Ng P

- . %2 1
> liminfe® ||h|-—— ) —h(") .

koo Tk Ly((k—1,k))
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Put a sufficiently large nx € N so that 1/nx < 1/3. Then for any z € [k — 1, k], we
have

h (w - nik> =g (x — nik> sin (leﬂ' (:z:— nik)) =—g (ac - n%z) sin(ngmz),

and so . (w B nik) ) = — (g (a: — n_lk) + g(:v)> sin(ngmz).

Hence we obtain

B = 7o) = h()

Lp((k—1,k))
1/p

k
(/ |(g(z) + g(z — ;Ll—)) sin(ngmz)[? dm)
k-1 k

> ( /k Ii |(29(z) sin(nxmz)|? dx) 1/p
) (/’il (g(:r B nik) - 9(37)) sin(ngm) ’ dm) v
> ([ ()

P
Thus, we have

(2.21) lim inf e*”

k—o0

Nk Lp((k—1,k))
* 1/p
likminf 2¢+” (/ (g(2))?| sin(ngmwz)|? dm)
—c0 k-1

A(-2)-w])

& 1/p
= liminf2e* ( / (g(2))?|sin(ngmz)|P d:r)
k—co k—1

(because of (2.13) and (2.19))

Y%

2

i 1/p
= liminf 2 ( / (e'“”zpk(m))ﬂsin(nmrw) | dx)
k—co k—1

\Y

X 1/p
lim inf 2 ( / (pr(2))P| sin(ngmwz)|? d:c)
k—co k=1

1 1/p
= liminf2 ( / (p1())?| sin(ngmz) [P dw)
k—co 0

1/p

= 2 (/Ol(pl(m))p d:v)l/P (/01 |sin7z|P da:) > 0.
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Consequently, it follows from (2.17) and (2.21) that

i WC=1/m) = FOlp _ o €15 = 1/me) = FOllp _
koo (= 2/mx) = FOlp — ko0 (= 2/m) = FOlln

K

which implies (iit). O

Remark 2.5. We see easily from (2.22) that there does not exist a constant C' such
that

I£(—a/2) = FOIR < CIFC = a) = FOIR

holds for every a > 0. Thus we see from condition (iii) of Theorem 1.1 that Ay(f)
is not a linear subspace in R*°.

Moreover, we should note that Theorem 2.4 means that condition (2) of Theo-

rem 1.2 is essential.
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