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ABSTRACT. In七hispaper， we discuss the linearity and the nonlinearity of a 
sequence space Ap(f) induced by a Lp-function f. In particular， we give 
examples of Lp-functions such that Ap(f) are not linear. 
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INTRODUCTION AND PRELIMINARIES 

Let 1(# 0) be an Lp-function defined on the real line ~ and assume 1:::; p < +00. 
For a sequence of real numbers a = (an) E ~oo, define 

and 
Ap(f) := {a E ~oo : iI!p(a; 1) < +oo}. 

The following results are known (cf.[2]): 

• For every a = (an) E ~oo, 

iI!p(lal; 1) = iI!p(a; 1), where lal = (Iani); 
• iI!p(a - b; 1) :::; iI!p(a; 1) + iI!p(b; 1) for every a, b E ~oo, i.e, the sets Ap(f) 

are additive subgroups of ~oo. 

Let Wl,p(~) be a Sobolev space, i.e, 1 E Wl,p(~) if and only if 1 E Lp(~) and 
the derivative D 1 of 1 in the sense of distribution belongs to Lp (~). In particular, 
if 1 E Ll (~) and D 1 is a Radon measure of bounded variation on ~, 1 called a 
function of bounded variation. The class of all such functions will be denoted by 
BV(~). Thus, 1 E BV(~) if and only if there is a Radon measure p defined in ~ 
such that Ipl(~) < +00 and 

l lcp l
dx = - J <pdp, cp E Co(~), 

where, IDll(~) = Ipl(~) means the total variation of p. 
It is obvious that a function 1 on ~ is absolutely continuous and the derivative 

11 is in Ll (~), then 1 is of bounded variation, i.e. W 1,1 (~) C BV(~) (see [5]). 
In [2], A. Honda, Y. Okazaki and H. Sato provided the following results: 
(i) ([2, Theorem 1, Theorem 2]) If 1 :::; p < +00 and 1(# 0) E Lp(~), then 

Ap(f) C Cp. In particular, 1 E Wl,p(~) implies Cp = Ap(f). 
(ii) ([2, Corollary 4]) If 1 < p < +00 and 1(# 0) E Lp(~), then Cp = Ap(f) if 

and only if 1 E Wl,p(~). 
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On the other hand, the authors ([6]) showed that necessary and sufficient con­
ditions for the linearity of Ap(f) , and that £1 = Al (f) if and only if f E BV(R). 

In this paper, we discuss the linearity and the nonlinearity of a sequence space 
Ap(f) induced by aLp-function f. In particular, we give two examples of Lp­
functions such that Ap(f) are not linear. 

1. THE LINEARITY OF Ap(f) 

In [6], We gave necessary and sufficient conditions for the linearity of Ap(f), and 
an example such that Ap(f) is linear. 

Theorem 1.1. ([6, Theorem 2.1]) Let 1 ::; p < +00 and f(=I- 0) E Lp(lR). Then 
the following are equivalent: 

(i) Ap(f) is a linear subspace ofRco ; 
(ii) For any 0 ::; k ::; 1, there exists a constant C (k) > 0 such that 

l lf (x - ka) - f(x)IPdx 

< C(k) l lf (x - a) - f(x)IPdx, Va> 0; 

(iii) There exits a constant C > 0 such that 

l lf (x - ka) - f(x)IPdx 

< C l lf (x - a) - f(x)IPdx, 0::; Vk ::; 1, Va> O. 

Theorem 1.2. ([3] and [6, Theorem 2.2]) Let f E LP(R), 1 ::; p < 00. If there 
exists a countable partition (ai)':'co on R satisfying the following conditions: 
(1) ai < ai+l and. lim ai = ±oo; 

t-+±co 

(2) inf(ai+l - ai) > 0; 
t 

(3) f is monotone on (ai,ai+l)' 
Then Ap(f) is linear. 

2. THE NONLINEARITY OF Ap(f) 

In this section, we give two examples of Lp-functions such that Ap(f) are not 
linear. We begin with a following theorem. 

Theorem 2.1. Let fo E Co(R)(=I- 0) with suppfo C [0,7T-j. For m and n EN, we 
define fm,n E C(R) by 

1 . 
fm n(x) = 1 + - sm(nx). , m 

Then there exist sequences {mil and {nil satisfying the following conditions (i) 
and (ii): 

j 

(i) f(x) = lim fo(x)IIfmi,ni(X) (uniformlyonR). 
)-+co i=l 

(ii) lim Ilf(' -7r/ni) - fUlip = 00. 

Hco Ilf(- - 27r/ni) - fUlip 
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Proof. Let 0 < a < 1 and /3 > 1 and take a sequence (mi) of N so that 

(2.1) 0 < a ~ fi (1 - ~J ~ 1 ~ fi (1 + ~J ~ /3. 

On the other hand, determine inductively a sequence (nj) of N satisfying the fol­
lowing conditions: 

(2.2) fj(x) = fo(x)!1 (1 + ~i Sin(niX))' 

(2.3) Ilfj (- -~) -IiOll
p 
~ (j -1) Ikj (- -~:) -fjOL, 

(2.4) ni is a multiple of 2ni-1 for every 2 ~ i ~ j. 

First, put nl = 1 and assume that the above three conditions (2.2), (2.3) and (2.4) 
hold for nl, n2, "', nj. We define fj,n as follows: 

(2.5) hn(X) = fj(x) (1 + _1_ sin(nx)) for n E N, x E lit 
mHI 

Then we have 

hn (x -;) - hn(x) 

fj (x - !!:.) (1 + _1_ sin(nx - 11')) -Ii(x) (1 + _1_ sin(nx)) 
n mj+l mj+l 

fj (x - !!:.) (1- _1_ Sin(nX)) - fj(x) (1 + _1_ sin(nx)) 
n mj+l mj+l 

( fj (x - !!:.) -Ii(x)) (1 -_1_ sin(nx)) - -2-fj(x) sin(nx). 
n mj+l mj+l 

Since fj(-=! 0) E Co(lIt) and 

lim Ilf· (. - !!:.) - f{)11 = 0, 
n-;oo J n J p 

we see that 

2 (1 )IIP --liminf Ifj(x) sin(nx)JP dx 
mj+l n-;oo lR 

(2.6) 2 (li1r ) lip --llfjllp - I sinxlPdx > O. 
mj+l 11' 0 

On the other hand, 

hn (x - 2:) -hn(X) 

fj (x - 211') (1 + _1_ sin(nx - 211')) - fj(x) (1 + _1_ Sin(nx)) 
n mj+l mj+l 

{fj (x- 2:) -fj(X)} (1+ m:+l sin(nx)). 

Since 

J~~ Ilfj (- -2:) -IiOll
p 

= 0, 
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we have 

(2.7) 

From (2.6) and (2.7), we see that 

for a sufficiently large number nj+1 with a multiple of 2nj. 
From the definition of hnHl' 

fj(x) (1 + _1_ sin(nj+1 x)) 
mj+1 

fo(x) IT (1 + ~ sin(ni x)) (1 + _1_ sin(nj+1 X)) 
i=l m, J+1 

fj+1(X). 

Thus we see that (2.8) implies 

Hence we see that (2.2), (2.3) and (2.4) hold for j + 1. Define f(x) on R by 

(2.9) f(x) = lim h(x) = lim fo(x) IT (1 + ~ sin(niX)) , 
J-+eX) J-).OO i=l mi 

where the convergence is uniform on R by (2.1). Then it is obvious from (2.1) that 
f E Co(R) and (i) holds. For j E N and x E R, we have 

f (x -7r/nj) - f(x) 

fj (x -7r/nj) fr (1 + ~ sin (ndx -7r/nj ))) 
i=j+1 m, 

- fj(x) fr (1 + ~ sin (nix)) 
i=j+1 m, 

(fj (x -7r/nj) - fj(X)) J~t (1 + ~i sin (nix)) . 

And hence from (2.1) we have 

If (x - 7r /nj) - f(x)1 l(fj (x - 7r /nj) - fj(x))1 J~t 11 + ~i sin (nix) I 

~ a Ifj (x - 7r/nj) - fj(x)l, 

and so 
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In the same way, we have 

f (x - 27r/nj) - f(x) 

fj(x-27r/nj) IT (1+~sin(ni(x-27r/nj))) 
i=j+1 m, 

- fj(x) IT (1 + ~. sin (nix)) 
i=j+1 ' 

(fj (x - 27r/nj) - fj(x)) IT (1 + ~. sin (nix)) . 
i=j+1 ' 

And hence from (2.1) we have 

If (x - 27r /nj) - f(x)1 = l(fj (x - 27r /nj) - fj(x))1 J~t 11 + ~i sin (nix) I 

::; IU·(x-27r/n·)-f·(x))1 II
oo 

(1+~) J J J m. 
i=j+1 ' 

::; ,6lfj (x - 27r/nj) - fj(x)l, 

and so 

(2.11) Ilfj (. - 27r/nj) - fjOllp ~ (1/,6) Ilf (. - 27r/nj) - fOli p for all j EN. 

Combining (2.3), (2.10) and (2.11), we have 

(2.12) Ilf (. - 7r /nj) - fO lip ~ (j - 1)(a/,6) Ilf (. - 27r /nj) - fOll p 

for all j EN. Thus we see that (ii) holds. o 
Remark 2.2. We see easily from (2.12) that there does not exist a constant C such 
that 

Ilf(· - a/2) - fOIl~ ::; Cllf(· - a) - fOII~ 

holds for every a > o. Thus we see from condition (iii) of Theorem 1.1 that Ap(f) 
is not a linear subspace in ~oo. 

Next we give an example of a more smooth function f such that Ap(f) is not 
linear. We begin with a lemma. 

Lemma 2.3. Let 1 ::; p < 00 and -00 < a ::; 00. Let'lj; E Lp((-oo, a)) n 
C1(( -00, a)) and 'Ij;' E Lp(( -00, a)). Then for any c > 0, we have 

11'Ij;(· - c) - 'lj;OIlLp((-oo,a)) ::; cIWIILp((-oo,a». 

Proof. For x E (-00, a), we have 

1'Ij;(x) - 'Ij;(x - c)1 = 11~c 'Ij;'(t) dtl ::; l~c 1'Ij;'(t) I dt 

::; (l~c 1'Ij;'(t)IP dt) l/p (l~c l q dt) l/q 

c1/q (l~c 1'Ij;'(t)IP dt) l/
P

, 
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where lip + 11q = 1. Hence 

II'l/JO - 'l/J(. - c)ll~p«_oo,a)) l~ I'l/J(x) - 'l/J(x - c)IP dt 

Thus we have 

< r!'/q l~ l~c 1'l/J'(t)IP dt dx 

:::; r!'/ql~lt+c''l/J'(t)IPdxdt 

:::; r!'/q+l l~ 1'l/J'(t)IP dt. 

o 

Theorem 2.4. Let 1 :::; p < 00. Then there exist a function f E Lp(JR) and a 
sequence (nj) of N such that: 
(i) f E COO(JR) n Lp(JR) and f(x) > 0 (x E JR); 
(ii) the number of x satisfying l' (x) = 0 on every bounded subinterval I of JR is 
finite; 
(iii) lim Ilf(' - link) - fOli p = 00. 

k---+oo Ilf(' - 2lnk) - fOll p 

Proof. We can construct f as follows. Let 

p(x) = {eo-'-'x2 (-1 < x < 1) 
Ixl ::::: 1. 

" II 

." 
2> 

M 

" 
" 
M 

II II 

Fig.1 y=p(x) 
Fig.2 y = Pn(x) 

1\ 

Then P E CO'(JR) and suppp = [-1.1]. Moreover, for all n E N, let Pn(x) = 
p(6(x - n + 1/2)), then we have supp Pn = [n - 2/3, n -1/3] and 0:::; Pn(x) :::; lie. 

Next, choose a sequence (nk) so that nk is a multiple of nk-l for each kEN and 

(2.13) 

holds (for example, nk = (k!)!). 
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Put 

cp(x) .- e-x2 

00 

g(x) .- cp(x) I>k(X) 
k=l 
00 

h(x) .- cp(x) L:>k(X) sin(nk?Tx) 
k=l 

J(x) .- cp(x) + h(x). 

Fig.3 y = g(x) Fig.4 y=h(x) 

Fig.5 y = J(x) = cp(x) + h(x) 

We see easily from 0 ~ Pk(X) ~ l/e and the definition of J that J(x) > 0 on JR 
and J E COO(JR) n Lp(JR) and so (i) hlods. 

To show that (ii), let kEN. We should note that J(x) = cp(x) on (k-1, k-2/3]U 
[k - 1/3, k]. We see from the definition that J'(x) = cp'(x) =1= 0 on (k - 1, k - 2/3], 
[k - 1/3, k). 

Next, we show that {x : f'(x) = O,k - 2/3 < x < k -1/3} is a finite set. In 
fact, suppose that the set {x: J'(x) = 0, k - 2/3 < x < k - 1/3} is infinite. Since 
J'(k - 2/3) = cp'(k - 2/3) =1= 0 and J'(k - 1/3) = cp'(k - 1/3) =1= 0, we see that an 
accumulation point is in (k - 2/3, k - 1/3). Put 

J(z) = e- z2 (1 + e-1/(1-36(z-k+l/2)2) sin(nk?Tz)) 

on z E C. Then we see that J(z) is regular on C \ {k - 2/3, k - 1/3} and We 
see from the identity theorem that J'(z) = 0 on C \ {k - 2/3, k - 1/3}. Hence 
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f'(k-2/3) = lim f'(k-2/3+c) = 0, which contradicts the hypothesis. Thus, we 
10->+0 

see that the set {x : 1'(x) = 0, k - 2/3 < x < k -1/3} for every kEN is finite, and 
so the set {x : l' (x) = 0, k - 1 :S x < k} for every kEN is also finite. Moreover, 
we see that the number of x satisfying 1'(x) = 0 on every bounded subinterval of 
IR is finite. 

To show (iii), We note that max Ih'(x)l:S Mnk for some M > 0, and so 
k-l:Sx:Sk 

Ilh'IILp((k-l,k)) :S Mnk for kEN. 
For k 2: 3, we have 

k-2 

Ilh'IILp((-oo,k-l)) < Ilh'IILp((-oo,O)) + L Ilh'IILp((i-l,i)) + 1ih'IILp((k-2,k-l)) 

and so 
k 2 

~ Ilh'IILp(( -oo,k-l)) 
nk 

i=l 

e
k2 

:S M-(nk_2(k - 2) + nk-l) 
nk 

M ek2 nk-l (e(k-l)2 nk-2 e-(k-l)2 (k - 2) + 1) . 
nk nk-l 

k 2 

Thus we see from (2.13) that lim ~ Ilh'IIL ((-00 k-l)) = O. Let kEN. Put 
k->oo nk p , 

a = k - 1 and c = 2/nk for h in place of 'if; in Lemma 2.3, then we have 

Il h (. - 2) - h(·)11 :S 2 1Ih'IILp((-00,k-l)) for kEN 
nk Lp(( -oo,k-l)) nk 

In the same manner, apply Lemma 2.3 as a = 00 and c = 2/nk for <P and g, then 
we have 

(2.14) 

(2.15) 

Hence 

11<p (- - :J -<p(')L :S 

11 9 (- - :J -g(')L < :k Ilg'llp for kEN 
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Put a sufficiently large nk EN so that 21nk < 1/3, and let i EN with k ~ i. Then 
for any x E [i - 1, i], since ni is a multiple of nk, we have 

h (x - :J = 9 (x - :J sin (ni1T (x - :J) = 9 (x - :J sin(ni1Tx), 

and so 

Thus we have that for a sufficiently large nk EN, 

and hence 

h .-- -h(·) 
II 

( 2) II nk Lp((k-l,oo)) 

Consequently, 

li~s~pek21Ih (- - :J -h(·) Lp((k-l,OO)) < li~s~pek21Ig (- - :J -g(·)llp 
2 k

2 

~ lim sup _e_llg/llp 
k-+oo nk 

o. (because of (2.13) and (2.15)) 

Combining this with (2.16), we have 

(2.17) 

Again, in the same manner, apply Lemma 2.3 as a = 00 and c = link for rp and 
g, then we have 

(2.18) Ilrp (- - ~J -rp(·)L < ~k Ilrp/llp for all kEN, 

(2.19) Ilg (- - :J -g(·)llp < :k IIg/llp for all kEN. 

Therefore we have 

(2.20) l\~:f ek2
1Jt (- - :J -fO lip 

~ 1\~:fek2 (-llrp(· - Ink) - rp(.) lip + IIh(· - Ink)) - h(·)llp) 

li~:f ek2 11h (- - ~J -h(·)L 

~ liminf e
k2 11h (. - ~) - h(·)11 . 

k-+oo nk Lp((k-l,k)) 
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Put a sufficiently large nk E N so that l/nk < 1/3. Then for any x E [k - 1, kJ, we 
have 

h (X - ~J = 9 (X - ~J sin (nk7r (X - ~J ) = -g (X - ~J sin(nk7rx), 

and so 

h (x - ~J -h(x) = - (g (X - ~J + g(x») sin(nk7rx). 

Hence we obtain 

Il h(' - ~) - h(·)11 
nk Lp«k-l,k)) 

( 
rk I(g(x) + g(x _ ~» sin(nk7rx)IP dX) lip 

Jk-l nk 

" (t, 1 (2g(x) ffin(n,~x)IP dx f' 
-(L 1 (g(X - ~,) - g(x)) ,;n(n, .. )I' dx r 

> 2 (L 1 (g(x) ,;n(n,~x)IP dx r -lig ( -~J -g() II, 
Thus, we have 

(2.21) liminfek211h (. -~) - h(·)11 
k-+oo nk Lp«k-l,k)) 

> liminf {2ek2 (rk (g(x))P1 sin(nk7rx)IP dX) lip 
k-+oo Jk-l 

_e
k2 1lg (- - ~J -g(')IIJ 

liminf2ek2 (t (g(x))P1 sin(nk7rx)IP dX) lip 
k-+oo Jk-l 

(because of (2.13) and (2.19)) 

liminf2ek2 (rk (e-X2Pdx))Plsin(nk7rX)lPdx)1/P 
k-+oo Jk-l 

> liminf2 (rk (Pk(x))Plsin(nk7rX)lPdx)l/P 
k-+oo Jk-l 

liminf2 (r
l
(Pl(X))Plsin(nk7rX)lPdx)l/P 

k-+oo Jo 

2 (l\Pl (x))P dX) lip (11 

I sin 7rxiP dX) lip > o. 
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Consequently, it follows from (2.17) and (2.21) that 

(2.22) lim Ilf(· -link) - fOll p = lim ek:"f(· -link) - fOllp 
k->eo Ilf(· - 2/nk) - fOli p k->eo ek Ilf(· - 2/nk) - fOlip 

=00, 

which implies (iii). o 
Remark 2.5. We see easily from (2.22) that there does not exist a constant C such 
that 

Ilf(· - a12) - fOIl~ :::; Cllf(· - a) - fOII~ 
holds for every a > O. Thus we see from condition (iii) of Theorem 1.1 that Ap(f) 
is not a linear subspace in Reo . 

Moreover, we should note that Theorem 2.4 means that condition (2) of Theo­
rem 1.2 is essential. 
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